Ab initio simulation of diffractometer instrumental function for high-resolution X-ray diffraction1
نویسندگان
چکیده
Modeling of the X-ray diffractometer instrumental function for a given optics configuration is important both for planning experiments and for the analysis of measured data. A fast and universal method for instrumental function simulation, suitable for fully automated computer realization and describing both coplanar and noncoplanar measurement geometries for any combination of X-ray optical elements, is proposed. The method can be identified as semi-analytical backward ray tracing and is based on the calculation of a detected signal as an integral of X-ray intensities for all the rays reaching the detector. The high speed of calculation is provided by the expressions for analytical integration over the spatial coordinates that describe the detection point. Consideration of the three-dimensional propagation of rays without restriction to the diffraction plane provides the applicability of the method for noncoplanar geometry and the accuracy for characterization of the signal from a two-dimensional detector. The correctness of the simulation algorithm is checked in the following two ways: by verifying the consistency of the calculated data with the patterns expected for certain simple limiting cases and by comparing measured reciprocal-space maps with the corresponding maps simulated by the proposed method for the same diffractometer configurations. Both kinds of tests demonstrate the agreement of the simulated instrumental function shape with the measured data.
منابع مشابه
Resolution of ab initio shapes determined from small-angle scattering
Spatial resolution is an important characteristic of structural models, and the authors of structures determined by X-ray crystallography or electron cryo-microscopy always provide the resolution upon publication and deposition. Small-angle scattering of X-rays or neutrons (SAS) has recently become a mainstream structural method providing the overall three-dimensional structures of proteins, nu...
متن کاملAb-Initio Study of Optical and Magnetic Properties of Tungsten Disulfide
In this research, the optical properties of tungsten disulfide including dielectric function, the static refractive index, the imaginary part of the dielectric function, optical band gap, energy loss spectrum and its magnetic properties have been studied. Calculations have been done by using Quantum Espresso package which is based on density functional theory and pseudo-potential technique. The...
متن کامل3 Ab initio structure solution by charge flipping
In this paper we present an extremely simple structure solution method termed charge flipping. It works ab initio on high resolution x-ray diffraction data in the manner of Fourier recycling. The real space modification simply changes the sign of charge density below a threshold, while in reciprocal space the modification is the F obs map without any weighting. We test the algorithm using synth...
متن کاملA compact high-resolution X-ray powder diffractometer
A new powder diffractometer operating in transmission mode is described. It can work as a rapid very compact instrument or as a high-resolution instrument, and the sample preparation is simplified. The incident beam optics create pure Cu Kα1 radiation, giving rise to peak widths of ∼0.1° in 2θ in compact form with a sample-to-detector minimum radius of 55 mm, reducing to peak widths of <0.05° i...
متن کاملar X iv : a st ro - p h / 07 02 62 3 v 1 2 3 Fe b 20 07 MGGPOD : A MONTE CARLO SUITE FOR GAMMA RAY ASTRONOMY – VERSION 1 . 1
We announce the forthcoming public release of Version 1.1 of MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (Version 3.21) package. MGGPOD is capable of simulating ab initio the physical processes relevant for the production of instrumental backgrounds. These processes include the build-up and delayed decay of radioactive isotopes as well as the prompt de-...
متن کامل